CRISP-DM (CRoss-Industry Standard Process for Data Mining)¶
1. 定义 (Definition)¶
- CRISP-DM 是数据挖掘领域的跨行业标准流程,它提供了一个清晰的框架,用于数据挖掘项目的各个阶段,从项目的启动到最终的部署。
(CRISP-DM is the cross-industry standard process for data mining, providing a clear framework for the stages of a data mining project, from initiation to final deployment.)
2. 阶段 (Phases)¶
- 业务理解 (Business Understanding):
-
定义:
在这一阶段,团队需要明确业务目标,并理解这些目标如何转化为数据挖掘任务。
(In this phase, the team needs to define the business objectives and understand how these objectives translate into data mining tasks.) -
数据理解 (Data Understanding):
-
定义:
这一阶段涉及收集初步数据,并通过探索性数据分析(EDA)理解数据的特点和质量。
(This phase involves collecting initial data and understanding its characteristics and quality through exploratory data analysis (EDA).) -
数据准备 (Data Preparation):
-
定义:
在数据准备阶段,数据科学家对数据进行清洗、转换和特征选择,为建模阶段做好准备。
(In the data preparation phase, data scientists clean, transform, and select features from the data to prepare it for the modeling phase.) -
建模 (Modeling):
-
定义:
这一阶段通过选择合适的建模技术和算法,对数据进行建模,并调整参数以优化模型性能。
(In this phase, the appropriate modeling techniques and algorithms are selected, and the data is modeled, with parameters tuned to optimize model performance.) -
评估 (Evaluation):
-
定义:
在评估阶段,模型的性能与业务目标进行对比,以确定模型是否成功地解决了业务问题。
(In the evaluation phase, the performance of the model is compared against business objectives to determine whether the model successfully addresses the business problem.) -
部署 (Deployment):
- 定义:
最后,成功的模型被部署到生产环境中,供实际业务使用,并且模型的效果需要持续监控和优化。
(Finally, the successful model is deployed into the production environment for actual business use, with ongoing monitoring and optimization of the model's performance.)