Regression 核心知识点 (Core Knowledge Points)¶
定义 (Definition)¶
- 回归是用于预测连续目标变量的统计方法。
(Regression is a statistical method used to predict a continuous target variable.)
常见类型 (Common Types)¶
-
线性回归 (Linear Regression)
通过拟合一条直线来预测目标变量。
(Predicts the target variable by fitting a straight line.) -
多元回归 (Multiple Regression)
扩展线性回归,使用多个自变量。
(Extends linear regression by using multiple independent variables.)
-
多项式回归 (Polynomial Regression)
使用多项式函数拟合数据,以捕捉非线性关系。
(Fits data using polynomial functions to capture non-linear relationships.) -
岭回归 (Ridge Regression)
增加L2正则化项以防止过拟合。
(Adds an L2 regularization term to prevent overfitting.) -
拉索回归 (Lasso Regression)
增加L1正则化项,以执行特征选择。
(Adds an L1 regularization term to perform feature selection.) -
弹性网回归 (Elastic Net Regression)
结合L1和L2正则化的优点。
(Combines the benefits of L1 and L2 regularization.)
关键概念 (Key Concepts)¶
-
假设 (Assumptions)
线性关系、独立性、同方差性和正态性。
(Linearity, Independence, Homoscedasticity, and Normality.) -
残差 (Residuals)
真实值与预测值之间的差异。
(Difference between actual and predicted values.) -
R平方 (R-squared)
解释目标变量方差的比例。
(Proportion of the variance in the target variable that is explained by the model.) -
调整后的R平方 (Adjusted R-squared)
调整R平方以考虑模型复杂度。
(Adjusts R-squared to account for the complexity of the model.) -
均方误差 (Mean Squared Error, MSE)
残差的平均平方。
(Average of the squared differences between actual and predicted values.) -
均方根误差 (Root Mean Squared Error, RMSE)
MSE的平方根,提供与数据同单位的误差度量。
(Square root of MSE, providing an error metric in the same units as the data.) -
均绝对误差 (Mean Absolute Error, MAE)
残差的平均绝对值。
(Average of the absolute differences between actual and predicted values.)
优点 (Advantages)¶
- 易于理解和解释 (Easy to understand and interpret)
- 计算效率高 (Computationally efficient)
- 适用于线性关系 (Effective for linear relationships)
缺点 (Disadvantages)¶
- 对异常值敏感 (Sensitive to outliers)
- 不能捕捉非线性关系 (Cannot capture non-linear relationships)
- 依赖于假设的满足 (Dependent on assumption satisfaction)
应用 (Applications)¶
- 价格预测 (Price Prediction)
- 销售预测 (Sales Forecasting)
- 风险评估 (Risk Assessment)
- 医疗成本预测 (Medical Cost Prediction)